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SUMMARY 
The slow viscous flow problem of an arbitrary solid particle in motion near a planar wall is recast into a 
boundary integral formulation. The present formulation employs the Green function appropriate to the 
planar wall problem and is developed in sufficient generality to allow calculations for arbitrary particles in 
any base flow which satisfies Stokes equations and no-slip on the wall. The resulting integral equations are 
easily discretized and solved for the particle surface tractions. Calculations are performed for axisymmetric 
motions of a variety of ellipsQids near the planar wall. Agreement with existing theory is excellent. 

KEY WORDS Stokes flow Creeping flow Wall Green function Boundary integral method 

INTRODUCTION 

Knowledge of the hydrodynamic resistance of a solid body moving slowly through a viscous 
liquid is of importance in understanding a wide variety of low Reynolds number sedimentation 
phenomena. The majority of slow viscous flow resistance calculations have focused on situations 
where the fluid medium extends to infinity in all directions. In all real situations, however, the 
fluid is externally bounded by rigid walls or free surfaces. When these external boundaries are 
located at finite distances from the particle, they can have significant effects on the particle 
motion. A variety of authors have theoretically considered the effects of walls on the creeping 
motion of small solid particles for specific cases where the particle and wall geometries are simple. 
In particular, Brenner used bipolar co-ordinates to obtain ‘exact’ corrections to Stokes drag for 
a solid sphere moving perpendicular to a solid wall for the full range of wall-to-sphere distances. 
Wakiya’ considered slow viscous flow past ellipsoids between two parallel walls. For more 
general geometries, asymptotic theory has been developed using the method of reflections when 
the particle is, in some sense, far from the wall. For example, Brenner3*4 and Cox and Brenner’ 
have considered the problem of an arbitrary particle in the limiting 6ase that the ratio of particle 
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dimension to the distance from bounding walls is small. At the other extreme, when the particle- 
to-wall distance is small compared to the particle dimension, classical lubrication theory6*’ has 
been applied. 

For more general cases, it is most convenient to adopt a numerical method. In particular, for 
low Reynolds number flows governed by the creeping motion equations, the most efficient 
approach is the boundary integral method pipneered by Youngren and Acrivos* for uniform flow 
past a solid particle of arbitrary shape in an unbounded fluid medium. In their technique, the 
creeping flow problem was formulated as a system of linear integral equations of the first kind for 
the distribution of stokeslets over the particle surface. The unknown densities of the stokeslets 
were exactly the desired particle surface stress forces. Subsequent numerical discretization of the 
integral system yielded an algebraic system which was easily solved for the particle surface stress 
forces. 

The formulation of Youngren and Acrivos could also be applied to the case of a solid particle 
moving near a planar wall. Because of their choice of the stokeslet as the fundamental singular 
solution, however, surface stress forces would need to be determined at the planar wall as well as 
the particle surface. In general, this would necessitate truncation of the planar wall to a finite 
region, with subsequent distribution of elements on this finite region. The present work considers 
an alternative boundary integral formulation of the problem, with the fundamental singular 
solution, or more accurately the Green function, selected to eliminate the need for determination 
of surface forces on the planar wall. The formulation will be sufficiently general to allow 
calculations for arbitrary particles in any base flow that satisfies Stokes equations and the no-slip 
condition on the planar wall. For simplicity, however, the method is illustrated for the specific 
case of axisymmetric ellipsoidal particles moving perpendicular to the planar wall in an otherwise 
quiescent fluid. 

FORMULATION 

Theory 

We consider the slow motion of a solid particle in the vicinity of an infinite, no-slip, planar 
boundary. The suspending fluid is assumed to be Newtonian with constant density. The problem 
is shown schematically in Figure 1. The analysis presented here is based upon the creeping 
motion approximation in which the inertial terms in the equations of motion are neglected 
entirely. The governing equations, in dimensionless form, are thus 

o = - v p + v 2 u ,  

0 = V . U .  

The boundary conditions are 
u + O  as IIxJI + co, 

u = 0 for x e P  = ( x ~ R ’ : x  = (x ,y,z)  and z = 0}, 
(3) 

(4) 
and on the surface of the particle 

u = h(x,) (specified). ( 5 )  
For the case of a solid particle translating in an otherwise quiescent fluid, 4 is constant on the 
surface. For the case of an imposed base flow at infinity ub, Pb, satisfying Stokes equation and the 
no-slip condition on the planar wall, the variables u and p in equations (1)<5) are to be 
interpreted as disturbance variables, i.e. the actual flow variables minus the base flow. 
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Figure 1 .  Schematic of the general problem 

In the boundary integral method, equations (1) and (2) and the corresponding boundary 
conditions (3H5) are recast into an equivalent integral formulation. The current application of 
the technique differs from previous applications (general details of the boundary integral 
formulation are given by Lady~henskaya~) primarily in the choice of the so-called ‘fundamental 
solution’ for the system. The transformation of equations (1)-(5) into integral form is accom- 
plished using the Green formula for the Stokes system: 

/n( (Vzu-Vp) .w-(Vzw+Vq) .u)dV= (n-T.w-n.C.u)dS, X E Q  (6) 

where 
T = (VU + ( V U ) ~ )  - PI, 

C = (VW + (VW)T) + qI. 

Equation(6) is valid for any sufficiently smooth fields u, p and w, q such that u and w are 
solenoidal. Here f2 is an open subset of R3 and dR is its boundary with outer normal n.* This 
formula, which relates the Stokes operator to its adjoint operator, is derived by direct application 
of the divergence theorem and algebraic manipulation. Solutions to appropriately selected adjoint 
operator systems may be superposed using equation (6). 

Thus, in the ‘classical’ boundary integral formulation, Youngren and Acrivos,** lo Lee and 
Leal” and Rallison and Acrivos12 all used the fundamental solution corresponding to a point 
force in an unbounded Newtonian fluid, i.e. the solution of 

6(x-&,=V,d‘(S, x)+Vp’(e, x), O=V,.VJ(S, x) (9) 

subject to the simple additional conditions 

* In the subsequent analysis it will be assumed that to each point of the boundaries of the domains under consideration 
there corresponds a ‘well defined‘ normal (for instance the boundary is assumed not to have corners or cusps). This 
constraint may be relaxed in certain situations, resulting in a modification of equations (13)-(14), (21H22) and all 
subsequent equations which derive from them. For more precise mathematical restrictions on f 2  and the reader is 
referred to References 8 and 9. 
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This ‘fundamental solution’ is the so-called stokeslet solution 

where r = 6 - x. Physically, is the ith component of the velocity at t due to a unit force, or 
stokeslet, applied at the point x in the direction ej. The quantity -4’ is the corresponding 
pressure. Superposition is performed using equation (6) by identifying w with Vj(& x), 72 with gj and 
q with @. The result is the system of integral equations 

-(U(X))~ = [dRn.T(S).Vj(S. x)dS,- n.gj(6, x).u(S)dS,, X E R  for j = 1, 2, 3. (12) 

The first integral in equation (12) is termed the single-layer potential and has density f = n.T. 
Similarly, the second integral is called the double-layer potential with density u. Equation (12) 
provides an integral representation for the solution of Stokes equation in terms of the values of 
the surface stress and velocity on 80. However, strictly speaking equation (12) is only valid for 
XER, but in fact the single layer potential is continuous at the boundary while the double layer 
potential suffers a jump across the boundary given by 

i 

Here Rc = R3/ (Ru 80) is the exterior to R and its boundary dR. Thus at the boundary 
equation (12) may be written as 

-T(U(X,))~ 1 = J (n.T(t).Vj(t, x,) - n-gj(5, x,)-u(&))dS,, x , ~ d Q .  
dR 

(14) 

Note that the problem has not actually been solved but instead recast as a system of integral 
equations. The normal tractions fare not known at the boundaries. The value of this boundary 
integral reformulation lies in the fact that knowledge of the boundary velocity (via boundary 
conditions) then allows direct calculation of the normal tractions via (14). The formulation (14) 
was used by Youngren and Acrivos’ to calculate the drag forces on solid particles in an 
unbounded domain. In that case R corresponds to the unbounded fluid and dR to the surface of 
the particle. 

However, when this ‘standard’ formulation is applied to the current problem, depicted in 
Figure 1, then necessarily 8R =.S ,  + P. In this case the normal tractions must be calculated both 
on the body surface and on the planar wall P. Although the unknown normal tractions can be 
determined numerically, the planar wall must necessarily be truncated at ajnite distance from the 
axis of symmetry, and the remaining portion of the wall discretized. 

A more efficient path used in the following sections of this paper is to choose a fundamental 
solution, or more correctly a Green function, that includes the no-slip boundary condition at the 
wall. Thus instead of (11) we use the solution of the system 

d(S, x)=O, ~ E P ,  X E R ~  (16) 
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as the fundamental solution or Green function to be superposed via (6). The solution to this 
system is discussed by Blake” and stems from the work of 0 ~ e e n . l ~  It is 

where r = (tl - x l ,  t2 - x2, t3 - x3IT, R = (el - x l ,  52 - x2, t3 + x3IT, r = C(tl - xl)’ 
+ (tz - ~ 2 ) ~  + (t3 - x3)’1 ”’, R = [(tl - x1)2 + (5’ - x2)2 + (t3 + x,)~]’/’ and R ,  = t3 + x3. 
The quantity Aj has the value + 1 for j = 1, 2 and - 1 for j = 3 .  Note that the Green function 
(17)-(19) consists of the fundamental solution (1 1) plus terms due to the presence of the wall. It 
corresponds to the velocity, pressure and stress fields for a point force in the fluid in the presence 
of a plane wall upon which the no-slip condition has already been applied. Given the geometry of 
Figure 1, the analogue of equation (12) for this Green function is 

- (u(x))~ = (n-T(Q.vj(6, x) - n.Ej(E,, x).u(Q)dS,, X E D  for j = 1, 2, 3. (20) 

In this expression, n is the normal vector pointing inward to D,. Because of condition (16), the 
surface integration in (20) is over S, and not S p  + P as would be the case if the fundamental 
solution (1 1) were used. The additional wall terms are well behaved for x E S, .  As a result, each 
term above involving the kernel v j  is continuous for XES,. The terms involving the kernel Ej 
suffer a jump across S,, but this discontinuity stems directly from the r terms, i.e. the terms 
present in the fundamental solution (11). Thus the jump condition follows from equation (13) and 
is 

Isp 

lim { Lpn*Ej(g, x)-u(QdS, n.Ej(5, x,)*u({)dSS, 
XED-X, 

XED, lim + x, { l p n . E j ( t ,  x)-u(c)dS, n-Ej(5, x,)-u(e)dSs, x,ES,. (21) 

Thus in terms of the Green function (17)-(19) the system to be solved is 
r r 

This is the primary result of this section. Equation (22) provides a relationship between the 
unknown tractions f on the particle surface and the particle velocity for arbitrary particle-wall 
geometries and base flows. 
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Formulution for particle translation in an otherwise quiescent Juid 

For the case in which the particle translates in an otherwise quiescent fluid, the result (22) can 
be simplified further. In this case u(x,) = us is a constant for xs E S,. Modifying the arguments of 
Ladyzhenskaya,' i t  can be shown that for a constant vector C, 

X E D ,  
[spn-Xj(e, x)-CdSS = -fC,,  XES,, i"' -C j ,  XED,. 

Using this fact, we obtain a linear integral equation of the first kind for f :  

- (us)j = ~'(6, x,) f(t) dS,, xs SP. (23) I, 
For the case of axisymmetric motion, i.e. us = -e, with the particle oriented such that it 

possesses axisymmetry about the z-axis, these equations simplify further, Here the particle is a 
body of revolution with z-axis being the axis of revolution. For convenience, a cylindrical co- 
ordinate system is employed with p = J(x' + y'). There are several ways in which the particle 
surface may be represented. The simplest (used by Youngren and Acrivos8) is to define the 
particle surface as (p(z), z) for 8E [0,2n), the functional dependence of p on z being given. This 
representation implicitly limits the types of surfaces which can be considered to those for which p 
is a single-valued function of z.  An equally simple but more general representation, which avoids 
this potential problem, is to parametrically define the surface as ( p ( s ) ,  z(s)) for 0 E [0,2n), where s 
is a parametric independent variable. This was the approach taken here. 

The dependence of the integrands on 8 in this system is known explicitly, and integration with 
respect to this variable may be performed. Although the resulting integration yields quite 
complex expressions, the net result is the reduction of the integration domain from two 
dimensions to one. The resulting equation for the unknown surface stress components fo andf, is 

where p ( s )  and i(s) are the derivatives of p and z with respect to s, and 

Here the integration variable 6 has been written as (p,z) and (po,zo) corresponds to x,, the 
fixed point in the integration. Also, r3 =z-zo and R, =z+zo. The expressions Cpm and 
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are defined as 

dx 

and 
2 * sinn2xcos"2x 

y!l2 [l - k ~ ~ i n ~ x ] P / ~  dx, C"" ~ 

where 

and 

Expressions (25)-(26) for C;" and 
integrations are given in the Appendix. 

Y = ( P  + P o l Z  + 4, k 2  = 4PPo/Y 

Y R  = ( p  + Po)' + R $ ~  ki = 4ppo/yR. 
have been analytically evaluated, and the results of the 

Implementation 

System (24) may be discretized and solved numerically. The approach taken here is that used by 
Youngren and Acrivos,8 i.e. the method of Krylov-Bogoliubov.'5 Specifically, the particle arc, 
which is given by ( p ( s ) ,  z(s)), for s E [so, s,], is divided into N elements. This is accomplished by 
dividing the interval [so, sf] into subintervals Asj with centres sj ( j  = 1, . . . , N). Each parametric 
value s j  corresponds to a point on the arc xj = ( p ( s j ) ,  z(sj ) ) ,  and each Asj corresponds to a 
segment or element of the arc. The elements are assumed to be sufficiently small that the local 
normal tractionsf, andf, may be assumed constant within each element. The resulting discretized 
system is 

This is a linear system of 2N equations in the 2N unknowns f , ( x j ) ,  f i ( x j ) ,  where 1 < j < N. Each 
coefficient 

r r  1 

for j # i was evaluated by Gaussian quadrature. When j = i and s = si then {(s) = x i ,  and the 
function Q becomes unbounded. In this case the region Asj is subdivided into three smaller 
regions, one of which is centred at the singular point s j  and is AFng = [s j  - ~ / 2 ,  s j  + 8/21. The 
constant E is assumed small enough that over AFng the arc may be accurately approximated by the 
tangent line through the point xj. Following Lee and Leal,'' the singular contribution to 
equation (27) from over the interval A? can be approximated analytically. The details of the 
singular contribution are given in the Appendix. In the remaining two portions of the singular 
element Asj, accurate Rhomberg integration was performed. The linear system was solved using a 
standard matrix inverter. 

NUMERICAL RESULTS 

Axisymmetric flow calculations were performed on the class of ellipsoidal particles given by 
(Figure 2(a)) 

p 2 / a z  + z2/b2 = 1, 
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Z 

Figure 2. (a) Ellipsoid geometrical parameters. (b) The parametrization variable s 

or equivalently, written in parametric form, 

z = z B a p + b  sin A S - -  + 1  p = a c o s  ns-- , s~ [O, l ] .  [ .  ( 3 1. ( 3 
The parameters a, b and zgap have been made dimensionless with respect to the length I, which is 
the radius of a sphere of equivalent volume. This non-dimensionalization provides a relationship 
between a and b. In fact, if c1 = b/a then b = Thus c1 and zgap, the minimum 
particle-to-wall distance, are the only geometric variables in the system. The case of a sphere is 
recovered by setting a = 1. The parametric variable s was chosen for simplicity, and in fact AS 

corresponds to the angle shown in Figure 2(b). A non-optimal strategy of constant element width 
As was employed. In all cases the particle drag was normalized with respect to the theoretical 
values for an unbounded fluid.I6 The normalized drag force is denoted by 1. 

and a = 

Sphere near a plane wall 

For the special case of a sphere, ‘exact’ values of 1 are given by’ 

- I}, (29) 
2sinh[(2n + l)w] + (2n + l)sinh(2w) 

(2n - 1)(2n + 3) 4sinhZ[(n ++)w] -(2n + l)’sinh’(o) n(n + l) { 
a, 4 

3 
I = -sinh(w) 1 

where 

0 = InCzgap + 1 + J(ztap + 2zgap)I. 
Table I lists the results from expression (29) as well as numerical results obtained here with 10,20, 
30 and 40 elements on the surface of the sphere. Even for 10 elements, the numerical and 
theoretical results are in excellent agreement. For all values of zgap in the range 100 to 0.25 the 
error is less than 0.5% for 10 elements, less than 0.09% for 20 elements, 0.05% for 30 elements and 
less than 0.03% for 40 elements. For smaller values of zgap the accuracy deteriorates for all 
numbers of elements because the magnitudes of the local stresses and stress gradients increase 
dramatically on the wall side of the sphere as zgap decreases. Large stress gradients lead to a 
breakdown of the constant-within-each-element assumption and so degrade numerical accuracy. 

The evolution of the local surface stresses as the sphere approaches the wall is plotted in 
Figures 3(a) and 3(b) for the 40-element case. An increase in the number of elements in the 
small-z,,, case improves the overall accuracy. This is demonstrated by the fact that with 40 
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elements and zEap = 0.1 the error in the normalized drag is 0.265%, as compared with 2.93% for 
10 elements. In the closest case of zEap = 0.05 with 40 elements the error in drag is only 1.13%. 

For the sake of comparison, sphere calculations were also performed using the classical 
boundary integral technique with the stokeslet fundamental solution. This entailed integration 
over the planar wall. The planar wall was discretized by truncating at a radial distance denoted by 
p, and placing Nwa,, elements in the interval from p = 0 to p,. Nsphcre elements of constant As width 
were used on the sphere surface. On the wall, elements of constant as well as non-constant width 
Ap were employed. The non-constant width elements were selected so that the Ap was small near 
p = 0 and increasing in size to p = p,.* The results are given in Tables 11-V where the numerical 
values for various combinations of Nwa,,, Nsphere and p ,  are compared with the exact solutions of 
Brenner. Although the accuracy obtained is quite good when the sphere is far from the wall for 
the majority of the cases considered, accuracy degrades rapidly as the sphere approaches the wall. 
As expected, when the sphere is near the wall the accuracy is best when the wall elements near 
p = 0 are smallest, since smaller elements are capable of resolving the large variation in wall 

fz 

103 

102 

10' 

S 
Figure 3. (a) Evolution of the z-component of the local surface tractions as z-,, decreases: -, zgaP= 100, ...., zgaP= 10; 

---, zgap=l; --, ~,,,=0.05 

* There are an infinite number of choices for such a non-constant distribution of elements. The current choice was made 
arbitrarily and for simplicity. If / I j  = p,[(j- 1/2)/Nw.11]2 then the jth element is the interval [ ( / I j -  +bj)/2, (Bi+ +Bj)/2] 
forj = 2,3, . . . , Nwa1, - 1. The first interval is [O, (/I1 + b2)/2] and the last interval is [ (bN,  .,,- + bNw .,,- 2)/2, p,]. zj = 0 
for all intervals. This distribution corresponds approximately to a linear increase in the Ap width moving outward along 
the wall. 
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-4 .5b  ' ' I '  ' I ' I ' I ' I ' I ' ' ' ' ' d 
0 . 1  .2  . 3  .4 .5 . 6  .7 .8 .9  1.0 

S 
Figure 3. (b) Evolution of the p-component of the local surface tractions as zpp decreases: -, zpp = 100; . . . ., zpp = 10; 
- - -, zpp = 1; --, zpp = 0.05. Note that in (b) the zpp = 100 curve and the zpp = 10 curve are visually indistinguishable. In 

both (a) and (b) the arbitrary eonstant due to pressure has been chosen so thatf,=O at s=O3 

surface traction. Thus for both constant and non-constant width elements the best accuracy near 
the wall for a given Nwall occurs when p, is smallest. 

The stokelet and Green function methods are best compared on the basis of the total number of 
elements, Ntotal, where Ntotal = Nwsll + Nsphere for the stokeslet case and N,,,,, is taken to be the 
number of elements, N, on the particle surface for the Green function method. Overall, for the 
same Ntotal the Green function results are far superior in accuracy to the stokeslet results. In 
particular, the Green function results for N = Ntota, = 30, with few exceptions, are more accurate 
than any of the stokeslet results for Ntotal = 60 (NwaIl = 30, Nsphere = 30). It is anticipated that the 
accuracy of the stokeslet method may be improved by distributing more smaller-width elements 
near p = 0 on the wall. Nevertheless, such redistributions are ad hoc and of unlimited variety, 
Further, such redistribution of points on the sphere surface for both the Green function and 
stokeslet methods could also undoubtedly lead to increased accuracy. Employing the Green 
function entirely eliminates the need for ad hoc choices of wall element distributions and wall 
truncation distances. For the solid sphere problem Brenner's exact solution is known, and the 
dependence of the accuracy of the stokeslet method on the parameters Nwell, p, and the 
distribution of elements can be determined. In any realistic problem the choice of these 
parameters may be difficult or unmotivated. 
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Table 11. A comparison of numerical results generated using the stokeslet 
fundamental solution and Nsphere = 6, Nwa,, = 6 with the theoretical results 
of Brenner (equation (29)) for the case of a sphere: (a) constant width wall 

elements; (b) non-constant width wall elements 
(a) 

a 
(analytic) 

a 
(Pt = 25) Error 

a 
(Pt = 50) Error 

100 
75 
50 
25 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0-75 
0.5 
0.25 
0.1 
0.05 

1.011263 
1.01 5024 
1.022553 
1.045196 
1.113503 
1.1 26194 
1.142068 
1.16249 1 
1.189737 
1.227889 
1.285087 
1.380204 
1.569205 
2.125536 
2.489273 
3.205390 
5.305324 

1 1.459 16 
21.58582 

1.01 5 590 
1.01 8660 
1.026260 
1.052580 
1.125140 
1.1 38050 
1.1 541 30 
1.174800 
1.202420 
1.241 260 
1.299680 
1.394650 
1.556630 
1.790740 
1.841 520 
1.875680 
1.885720 
1.878580 
1 %74220 

0.428 
0.358 
0.363 
0.706 
1.05 
1.05 
1.06 
1.06 
1.07 
1.09 
1.14 
1.05 

-0.801 
- 15.8 
- 26.0 
-41.5 
- 64.5 
- 83.6 
-91.3 

1.01 88 10 
1.023150 
1.032010 
1.056430 
1.125940 
1.138890 
1.154960 
1.1751 50 
1.200600 
1.232290 
1.269840 
1.308740 
1.336160 
1.331850 
1.3241 60 
1.3 14010 
1.301 850 
1.294010 
1.291440 

0.746 
0.801 
0.925 
1.07 
1.12 
1.13 
1.1 3 
1.09 
1.913 
0.358 

- 1.19 
-5.18 
- 14.9 
- 37.3 
- 46.8 
- 59.0 
- 75.5 
- 88.7 
- 94.0 

1 1 a 
'gap (analytic) ( p ,  = 25) Error ( p ,  = 50) Error 

100 
75 
50 
25 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0.75 
0.5 
0,25 
0.1 
0.05 

1.011263 
1 .O 1 5024 
1.022553 
1.045 196 
1.1 13503 
1.126 194 
1.142068 
1.16249 1 
1.189737 
1.227889 
1.285087 
1.380204 
1.569205 
2.125536 
2.489273 
3.205390 
5.305324 

11.45916 
21-5858 

1.015480 
1.018490 
1.026000 
1,052360 
1.1 25430 
1.138440 
1.154660 
1.175500 
1.203290 
1.2422 10 
1.300720 
1.399000 
1.598540 
2.185370 
2.566520 
3.403 5 70 
7.652900 

30.20205 
35.74634 

0.4 1 7 
0.341 
0.337 
0.685 
1.07 1 
1.087 
1.103 
1.119 
1.139 
1.166 
1.216 
1.362 
1.869 
2.82 
3.10 
6.18 

44.2 
164 
61.0 

1.018690 0.734 
1.023010 0.787 
1.031910 0.915 
1.056490 1.08 
1.126320 1.15 
1.139300 1.16 
1.155600 1.18 
1.176710 1.22 
1.205120 1.29 
1.245240 1.41 
1.305390 1.58 
1.403730 1.70 
1.596800 1.76 
2,292810 7.87 
2.937180 18.0 
4.742860 48.0 

13.30720 151 
1 15.297 1 906 

- - 
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Table 111. A comparison of numerical results generated using the stokeslet 
fundamental solution and Nsphere = 10, Nwal, = 10 with the theoretical results 
of Brenner (equation (29)) for the case of a sphere: (a) constant width wall 

elements; (b) non-constant width wall elements 
(a) 

I 1 1 
Z g w  (analytic) ( pt = 25) Error ( pt = 50) Error 

100 
75 
50 
25 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0.75 
0.5 
0.25 
0- 1 
0.05 

1.01 1263 
1-01 5024 
1-022553 
1,045196 
1.1 13503 
1.126 194 
1.142068 
1.162491 
1.189737 
1.227889 
1-285087 
1-380204 
1569205 
2-125536 
2.489273 
3.205390 
5.305324 
11.45916 
21.58582 

1.008 3 30 
1.011400 
1.01 8990 
1Q45130 
1.1 17210 
1.130050 
1.146030 
1.166540 
1.193830 
1.23 1980 
1.289180 
1.384720 
1576370 
2.083 520 
2.320980 
2.612240 
2.937680 
3.139810 
3.208300 

- 0.290 
-0.357 
- 0.348 
- 0006 

0.333 
0.342 
0,347 
0348 
0344 
0.333 
0.3 19 
0327 
0457 

- 1.98 
- 6.76 
- 18.5 
- 44.6 
- 72.6 
-85.1 

1.0 1 1 540 
1.0 1 5860 
1.024650 
1.048 880 
1.117560 
1.130260 
1.1461 80 
1.166740 
1.194300 
1.233000 
1.290090 
1.377360 
1.505340 
1.637900 
1.654970 
1.658980 
1.647910 
1.634 120 
1.628570 

0027 
0.082 
0.205 
0352 
0.364 
0.361 
0.360 
0.366 
0.386 
0.4 16 
0.389 

- 0.206 
- 4.07 
- 22.9 
- 33.5 
-48.2 
- 68.9 
- 85.7 
- 92.5 

1 1 1 
(analytic) ( p ,  = 25) Error (pt = 50) Error zw 

100 
75 
50 
25 
10 
9 
8 
7 
6 
5 
4 
3 

.2 
1 
0.75 
0.5 
0.25 
0- 1 
0.05 

1.01 1263 
1.015024 
1.022553 
1.045196 
1.1 13503 
1.126 194 
1.142068 
1-16249 1 
1.189737 
1.227889 
1.285087 
1.380204 
1.569205 
2.125536 
2.489273 
3.205390 
5.305324 

11.45916 
21-58582 

1.008260 
1.011300 
1.018820 
1.044970 
1.1 17260 
1.130130 
1.146 180 
1.166760 
1.194180 
1.232540 
1.290050 
1.385750 
1.576420 
2.142720 
2.520320 
3.294 1 10 
5.750570 

13.27579 
21-02722 

-0'297 
- 0.367 
- 0.365 
- 0.022 

0337 
0.350 
0.360 
0.367 
0373 
0379 
0.386 
0.402 
0.460 
0.808 
1.25 
2.77 
8.39 

15.9 
- 259 

1.011460 
1.015770 
1.024570 
1.048880 
1.117840 
1.130600 
1.146570 
1.167120 
1.194560 
1.233040 
1.290850 
1.387280 
1.580980 
2.172760 
2.563390 
3.327460 
6.182470 

25.47089 
27.62877 

0.019 
0.073 
0.197 
0.352 
0389 
0391 
0.394 
0.398 
0.405 
0420 
0.448 
0.5 13 
0750 
2.22 
2.98 
3.8 1 

16.5 
122 
28.0 
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Table IV. A comparison of numerical results generated using the stokeslet fundamental solution and 
Nsphere = 20, Nwa,, = 20 with the theoretical results of Brenner (equation (29)) for the case of a sphere: 

(a) constant width wall elements; (b) non-constant width wall elements 
(a) 

1 1 1 1 
(analytic) (p ,  = 25) Error (p ,  = 50) Error ( p ,  = 100) Error %ap 

100 
75 
50 
25 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0-75 
0.5 
0.25 
0.1 
0.05 

1.01 1263 
1 .O 1 5024 
1.022553 
1.045 196 
1.1 13503 
1.1 26194 
1.142068 
1.1 6249 1 
1.1 89737 
1.227889 
1.285087 
1.380204 
1.569205 
2.125536 
2.489273 
3.205390 
5.305324 

11.45916 
2 1.58582 

1.005340 
1,008420 
1.016020 
1.042100 
1.113980 
1.1 26790 
1.142760 
1.1 63260 
1.190540 
1.228680 
1.285790 
1.380630 
1.568760 
2.126090 
2.496450 
3.2 12790 
4.88 1460 
7.284840 
8.783280 

-0.586 
-0651 
-0.639 
-0.296 

0.043 
0.053 
0.061 
0.066 
0.067 
0.064 
0.055 
0.03 1 

0.026 
0.288 
0.23 1 

- 0.028 

- 7.99 
- 36.4 
- 59.3 

1408550 
1.012870 
1.02 1 630 
1.045780 
1.114390 
1.127060 
1.142900 
1.163270 
1.190430 
1.228440 
1.285470 
1.380790 
1.572100 
2.078760 
2.3 1 6 190 
2.607630 
2.933810 
3.136340 
3.204850 

-0.268 1.011310 
-0.212 1.015470 
-0.090 1.023340 

0056 1W6120 
0-080 1.1 14270 
0.077 1 .I 26930 
0.073 1.142810 
0067 1.163320 
0.058 1.190820 
0.045 1.229440 
0.030 1.286430 
0.042 1.373560 
0.184 1.501380 

-2.20 1.633810 
- 6.95 1.650860 
- 18.6 1.654870 
- 44.7 1-643760 
-72.6 1.629750 
- 85.2 1.623890 

0.005 
0.044 
0077 
0.088 
0.069 
0.065 
0.065 
0.07 1 
0.09 1 
0.126 
0.105 

- 0.48 1 
-4.32 

-23.1 
- 33.7 
- 48.4 
- 69.0 
- 85.8 
-92.5 

(b) 

1 /z 1 1 
(analytic) ( p ,  = 25) Error (p ,  = 50) Error (p ,  = 100) Error 

100 1.01 1263 1.005310 -0.589 1W3510 -0.272 1.011290 0.026 
75 1.015024 1W8370 -0.656 1.012820 -0.217 1.015460 0.043 
50 1.022553 1'015940 -0.647 1*021590 -0.094 1.023330 0.076 
25 1.045196 1.042010 -0.305 1.045780 0.056 1.046140 0.090 
10 1.113503 1.113970 0.042 1.114490 0.089 1.114490 0.089 
9 1.126194 1.126800 0.054 1.127190 0.088 1.127190 0.088 
8 1.142068 1.142780 0.062 1.143080 0.089 1.143080 0.089 
7 1.162491 1.163300 0.070 1.163520 0.089 1.163530 0.089 
6 1.189737 1.190620 0.074 1.190790 0.089 1.190810 0.090 
5 1.227889 1.228820 0.076 1.228980 0089 1.229030 0.093 
4 1.285087 1.286060 0.076 1.286240 0.090 1.286370 0.100 
3 1.380204 1.381200 0.072 1.381500 0.094 1.381850 0.119 
2 1.569205 1.570230 0.065 1.570960 0-112 1.572140 0.187 
1 2.125536 2.126880 0.063 2.130670 0.242 2.137710 0.573 
0-75 2.489273 2.491240 0.079 2.498970 0.390 2.515210 1.04 
0-5 3.205390 3.210330 0.154 3.231620 0.818 3.290070 2.64 
0.25 5.305324 5.344480 0,738 5.463540 2.98 5.757460 8.52 
0.1 11.45916 12.07906 5.41 13.84710 20.8 15.27464 33.3 
0.05 21.58582 24.72773 14.6 30.57144 41.6 36.88208 70.9 
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Table V. A comparison of numerical results generated using the stokeslet fundamental solution and 
Nsphere = 30, Nwall = 30 with the theoretical results of Brenner (equation (29)) for the case of a sphere: 

(a) constant width wall elements; (b) non-constant width wall elements 
(a) 

~~ 

1 1 1 1 
(analytic) (p, = 25) Error (pt = 50) Error (pt = 100) Error zeap 

100 
75 
50 
25 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0.75 
0.5 
0.25 
0 1  
0.05 

1.01 1263 
1 .O 1 5024 
1.022553 
1.045 196 
1.113503 
1. I26194 
1.142068 
1.162491 
1.189737 
1.227889 
1.285087 
1.380204 
1.569205 
2.125536 
2.489273 
3.205390 
5.305324 

11.4591 6 
21.58582 

1004810 
1~007900 
1.015500 
1.041570 
1.113410 
1-126220 
1.142 190 
1.1 62690 
1.1 89970 
1.228130 
1.285290 
1.380240 
1.568640 
2.121 690 
2.483940 
3.207 130 
5.347030 

10.288800 
14.86634 

- 0.638 
- 0.702 
- 0690 
-0.347 
- 0.008 

0.002 
0.01 1 
0.017 
0.020 
0020 
0.0 1 6 
0003 

-0.036 
-0.181 
-0214 

0054 
0786 

- 10.2 
-31.1 

1.008020 
1.01 2330 
1 $02 1090 
1.045230 
1.1 13840 
1.126520 
1.142380 
1.162770 
1.189960 
1.2280 10 
1.285000 
1.379710 
1.568270 
2.131 500 
2.487960 
3.089850 
4.141040 
5.2061 30 
5.7 19 160 

-0.321 
- 0265 
-0.143 

0.003 
0030 
0.029 
0027 
0.024 
0.0 1 9 
0010 

- 0.007 
-0'036 
- 0.060 

0.28 1 
-0053 
- 3.60 

-21.9 
- 54.6 
- 73.5 

1.010770 
1 .O 14930 
1.022790 
1 945 5 70 
1.113760 
1 -1 26410 
1.142230 
1.162580 
1.1 89740 
1.227860 
1.285370 
1.38 1670 
1-566050 
1.935660 
2.054850 
2.166220 
2.250720 
2.280410 
2.285870 

- 0.049 
- 0.009 

0.023 
0.036 
0.023 
0019 
0.014 
0.008 
09003 

-0002 
0.022 
0.106 

- 0.20 1 
- 8.93 
- 17.5 
- 32.4 
- 57.6 
- 80.1 
- 89.4 

1 i, 1 1 
(analytic) (p ,  = 25) Error ( pt = 50) Error ( p ,  = 100) Error Zgap 

100 
75 
50 
25 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0.75 
0.5 
025 
0.1 
0.05 

1.011263 
1 .O 1 5024 
1.022553 
1.045196 
1.113503 
1.126 194 
1.142068 
1.162491 
1.189737 
1.227889 
1.285087 
1.380204 
1.569205 
2.125536 
2489273 
3.205390 
5.305324 

1 1.459 16 
21.58582 

1.004790 
1.007860 
1.01 5440 
1.041510 
1.113400 
1 * 1 26220 
1.142200 
1.1 62700 
1.190010 
1.228200 
1.285420 
1.380520 
1.569440 
2.1 25380 
2.488790 
3.204310 
5.305440 

11.56424 
22.63 3 16 

- 0.640 
- 0.706 
- 0.696 
-0.353 
- 0.009 

oa32 
0.0 12 
0.0 1 8 
0.023 
0.025 
0.026 
0.023 
0015 

- 0.007 
-0.019 
- 0.034 

0.002 
0.917 
4.85 

1.007990 
1.012300 
1.02 1060 
1.045220 
1.1 13880 
1,126570 
1.142450 
1.1 62870 
1.190110 
1.228260 
1.285440 
1.380540 
1.569500 
23125960 
2.4901 80 
3.208820 
5.339160 

12.036 15 
25.79175 

-0.324 
- 0.268 
-0.146 

0.002 
0.034 
0.033 
0.033 
0.033 
003 1 
0.030 
0.027 
0.024 
0.019 
0.020 
0.036 
0.107 
0.638 
5.04 

19.5 

1.010750 
1.014920 
1.022780 
1.045580 
1.113890 
1.126580 
1.142460 
1.1 62880 
1.1901 20 
1.228270 
1.285480 
1.380640 
1,569850 
2.1 28290 
2.4952 10 
3.223820 
5.437470 

13.4901 8 
32.16383 

- 0.05 1 
-0.010 

0.022 
0.037 
0.035 
0-034 
0.034 
0.033 
0032 
0.03 1 
0.03 1 
0.032 
0.04 1 
0130 
0.238 
0.575 
2.49 

17.7 
49.0 
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Figure 4 compares the computational time for the Green function and the stokeslet method as 
a function of Ntotal. When N,,,,, is small the Green function method is approximately 1i times 
slower than the stokeslet method. The longer computational time of the Green function method 
for the same Ntotal is a direct consequence of the increased complexity of computing the Green 
function kernels compared with the stokeslet kernels. For larger Ntotal the time required to invert 
either the stokeslet or Green function linear systems for the same Ntotal (which is approximately 
the same since both systems are 2N,,,,, x 2N,,,,, in size) becomes more important and the ratio of 
computational times tends toward unity. Note, however, that for comparable accuracy the Green 
function method requires less than half the total number of elements that the stokeslet method 
requires. Thus for a given level of accuracy the Green function method is actually substantially 
faster than the stokeslet method. All computations were performed on a Sun 3,460 workstation 
with a floating point accelerator. Absolute computational times were of the order of minutes (for 
instance, stokeslet method calculations with Ntotal = 60 took approximately 240 CPU seconds, 
N,,,,, = 40 took 100 CPU seconds, Ntotal = 20 took 25 CPU seconds and Ntotal = 12 took 
10 CPU seconds). 

Ntotal 
Figure 4. Comparison of computational time between the wall Green function technique and the stokeslet fundamental 
solution technique. T,,,, representing the ratio of computational times (Green method)/(stokeslet method), is plotted 

against N,,,,, 
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Ellipsoids near a plane wall 

Calculations were carried out for ellipsoids with axis ratios a of 0.0625, 0.125, 0.25, 05, 2, 4, 8 
and 16. The parameter zgap ranged from 0.05 to 100. Computations were terminated for small zEap 
when calculated local stresses grew large and differed significantly in neighbouring elements (this 
generally occurred when the computed value of i was of the order of several hundred). 

Brenner3 developed an asymptotic theory for the case when an arbitrarily shaped particle is in 
motion far from the wall. More specifically, if Re, is the equivalent radius of the particle (defined 
such that 6npURe, is the force exerted on the particle when falling with velocity U in the absence 
of the wall), then Brenner’s asymptotic theory is valid for z, = zcenlre/Rcq >> 1, where z,,,,,~~ is the 
dimensional z-axis distance to the centre of the particle. This asymptotic theory predicts an 
expression of the form 

def 

1 
1 - 9/82, + O ( Z ; ~ ) ’  

A = - -  

Note that z ,  =(zgap + 
expressions16 

(l/Req), and for ellipsoidal particles Re, is derived from the general 

R.9 8 
1 + b0) ’  

where 

u2 - 1 > 0, 

for a’ - 1 < 0. 

Numerica! results for the ellipsoid and sphere cases are compared with the large-z, theory in 
Figures 5(a)-13(a). The most remarkable observation from these comparisons with the large-z, 
theory is that the numerical results agree quantitatively with the large-z, theory for values of z, as 
small as 5,  while qualitati~w agreement extends to even lower values of z,, including the sharp 
upturn in 1. for z ,  = 918. However, it is clear that the far-field results cannot literally capture the 
singularity in i and other detailed behaviour for very small zgap (or 2 , ) .  For this purpose a more 
appropriate asymptotic analysis is via lubrication theory for flow in a thin film. 

Using classical lubrication assumptions, Cox6 developed an asymptotic theory which is valid 
for the case in which zlub = bzEa,/a2 = zEapa4l3 4 1. This theory predicts def 

Explicit in Cox’s lubrication theory is the assumption that as Zlub -+ 0 the approaching surfaces 
come together in single-point contact. Thus Cox’s theory is not valid for the case of a disc 
approaching a planar wall with the face of the disc parallel to the wall. In fact, the case of a disc of 
radius R approaching a planar wall in this manner was analysed by Reynolds’ who predicted 

R 4  
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where fsap is the dimensional gap distance. Notice that as fgaP+O equation(31) predicts I 
increasing effectively as l/fgap, while equation (32) predicts l/fiap. Necessarily, when single-point 
contact will occur (as in all ellipsoid cases considered in this paper) then equation (31) predicts the 
correct limiting behaviour for sufficiently small fwp. Nevertheless, ellipsoids with sufficiently 
small values of a resemble discs with radii R = bl, and we may thus expect Reynolds’ result, 
equation (32), to provide a reasonable approximation for some intermediate flap distances and 
sufficiently small values of a. For these ellipsoid cases equation (32) may be written as 

Numerical results for small Zlub values are plotted in Figures 5(b)-13(b) together with the 
asymptotic formula (31) and, where relevant, (33). For the case a = 1 we also show Brenner’s 
analytic theory for a sphere (equation (29)). 

The results for a = 1,2 and 4 clearly approach the lubrication asymptote. On the other hand, 
for a = 8 and 16 we were not able to capture the approach to asymptotic behaviour because 
computations were terminated for zgap = 0.05, and in these cases this corresponds to zlub values 
well outside the range of validity of Cox’s lubrication theory. 

The numerical results for a < 1 demonstrate the transition between Reynolds’ result for the 
disc, (33), and the lubrication theory, (31), at ‘intermediate’ values of Zlub for small a. In particular, 

Figure 5. (a) Large-z, results: 0, numerical results for a= 16 with 40 elements; -, asymptotic predictions as given by 
equation (30) 
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Figure 5. (b) Small-z,,, results: n, numerical results for a= 16 with 40elements; -, Cox’s lubrication theory as given by 
equation (31) 

as a decreases from 0.5 to 0.0625 we see that the numerical results agree closely with (33) over a 
significant range of Zlub before (presumably) reverting to the lubrication asymptote for even 
smaller values of zlub. 

It should be noted, in all of the comparisons between our results and Cox’s lubrication theory, 
that the latter is based on the implicit assumption that there exist extremely localized regions of 
high stresses and stress gradients near the point of smallest gap. Because of resolution difficulties, 
the current numerics break down when localized high stresses and stress gradients occur. Despite 
this fact, the numerics are able to provide information indicating trends, asymptotes and 
approximate regions of validity of Cox’s lubrication theory. In particular, the numerics clearly 
indicate that Reynolds’ lubrication theory is a better approximation than Cox’s theory for small-a 
cases (0.125 and 0.0625 in particular) and intermediate Zlub Values. 

CONCLUSIONS 

The wall Green function formulation of the boundary integral method for low-Reynolds- 
number flow was carefully tested against the analytic results of Brenner for the translation of a 
solid sphere toward a plane wall, and was found to yield highly accurate results up to 
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dimensionless gaps of 0.05. When compared to the boundary integral formulation using the 
stokeslet fundamental solution, the Green function formulation was found to be more accurate 
for the same total number of elements. In fact, the Green function method required approximately 
half the number of elements that the stokeslet method required to maintain the same level of 
accuracy. Although, the Green function formulation was slower computationally for the same 
Ntolalr the requirement of less elements to maintain the same level of accuracy easily compensates 
timewise for this disadvantage. The solid ellipsoid results compared extremely well with the far- 
field asymptotic results of Brenner for distances as small as 2, = 5. The current numerics as well as 
Brenner’s analytic theory for a sphere (equation (29)) indicate an upper bound of Zlub = 0.05 for 
the range of predictive validity of Cox’s lubrication theory for the particle geometries considered 
here. Although as zlub + 0 Cox’s lubrication theory necessarily prcdicts the correct limiting 
behaviour of A, for the near-disc-like ellipsoids having a values of 0.25, 0.125 and 0.0625, the 
numerics indicate that Reynolds’ lubrication theory for a disc is a more accurate approximation 
for intermediate i jub  values in the range 0.05 < zlub < 0.1. 
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Figure 6. (a) Large-z, results: U, numerical results for a = 8 with 40 elements; -- ., the asymptotic predictions as given by 
equation (30) 



Figure 6. 

4 

4.c 

3.8 

3.6 

3 .4  

3.2 

3.0 

2. E 

2. E 

2.4 

2 . 2  

2.0 

1.8 

1.6 

1 . 4  

1.2 

1.0 

HYDRODYNAMIC PARTICLE-WALL INTERACTION 67 1 

0 . 2  . C  . 6  .R 1.0 1 .2  1 . C  ! . 5  1 .8  2.0 

‘lub 

(b) Small-z,,, results: 0, numerical results for a = 8 with 40 elements; -, Cox’s lubrication theory as given 
equation (31) 



672 E. P. ASCOLI, D. S. DANDY AND L. G. LEAL 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

100 101 102 

z c  

Figure 7. (a) Large-z, results: 0, numerical results for a = 4  with 40 elements; -, asymptotic predictions as given by 
equation (30) 
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Figure 7. (b) Small-z,,, results: 0, numerical results for a=4 with 40 elements; -, Cox’s lubrication theory as given by 
equation (31) 
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Figure 8. (a) Large-z, results: 0, numerical results for a=2 with 40 elements; -, asymptotic predictions as given by 
equation (30) 
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(a) 0, numerical results for the sphere case (a= 1) with 40 elements; -, theoretical predictions 
given by equation (29); . . . . .. far-field asymptotic predictions as given by equation (30) 

of Brenner as 
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Figure 9. (b) 0, numerical results for the sphere case with 40 elements; -, theoretical predictions of Brenner as given by 
equation (29); . . . . ., Cox’s lubrication theory as given by equation (31) 
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Figure 10. (a) Large-z, results: 0, numerical results for a = 0 5  with 40 elements; -, asymptotic predictions as given by 
equation (30) 
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Figure 10. (b) Small-z,,, results: 0, numerical results for a=05 with 40 elements; -, Cox's lubrication thkory as given 
by equation (31) 
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Figure 11. (a) Large-z, results: 0, numerical results for a = 0.25 with 40 elements; -, asymptotic predictions as given by 
equation (30) 
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Figure 11. (b) Small-z,,, results: 0, numerical results for a =@25 with 40 elements; -, Cox's lubrication theory as given 
by equation (31);. . . ., Reynolds' lubrication theory given by equation (33) 
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Figure 12. (a) Large-z, results: 0, numerical results for a =0125 with 40 elements; -, asymptotic predictions as given 
by equation (30) 
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Figure 12. (b) Small-z,,, results: 0, numerical results for a=0.125 with 40 elements; -, Cox’s lubrication theory as 
given by equation ( 3 1 k .  . . . ., Reynolds’ lubrication theory given by equation (33) 
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Figure 13. (a) Large-z, results: 0, numerical results for a = 0-0625 with 40 elements; -, asymptotic predictions as given 
by equation (30) 
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Figure 13. (b) Small-z,,, results: 0, numerical results for a=00625 with 40 elements; -, Cox's lubrication theory as 
given by equation (31);. . . ., Reynolds' lubrication theory as given by equation (33) 

APPENDIX 

The integrals C;m and 6im 

expressions involving the complete elliptic integrals of the first and second kind given by 
Using standard integral tables, the integrals denoted by C;"' and 6;"' can be reduced to 

dx Ji [l - k2sin2x]'/2 ' 

Jon [l - k2sin2x]3/2 ' 

K(k) = 2 

dx 
E(k) = 2 

The final expressions for Cim are 

4 Cl 00 - -y'/2Ky 

(34) 

(35) 
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0 2  - c o o  - c20 
CP - P P '  

where 

(44) 

(45) 

6' = 1 - kZ.  

The corresponding expressions for k;"' are obtained from the above by replacing y with 7, and k 
with k, .  

Small-k expansions 

When k and/or k, + 0, numerical inaccuracy necessitates the use of asymptotic expansions for 
the expressions C;m and tirn. These asymptotic expansions are obtained by performing a 
generalized binomial expansion in k 2  on the integrands given in equation(25) and (26). The 
results, accurate to 0(k4)  as k -+ 0, are 

271 
C f o  = y"z(1 + & k 2 ) ,  (46) 

271 Go = y3/2(1 + $ k 2 ) ,  (48) 

(49) 
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27c 
Ci0  = yslz (1 + @2), 

(54) 

Again the corresponding expressions for EFrn are obtained from the above by replacing y with y R  
and k with k, .  

5 2  I C  

CZo = y5’2(1 + g k  ). 

The singular contributions 

The numerical integration breaks down as 5 + x since the kernel becomes unbounded in this 
case. To include this integrable singular contribution it is necessary to approximate the integral 
analytically. This is accomplished by Taylor series expanding the singular terms about the point 
( p o ,  z,) in (26). The details involved in carrying out these expansions are analogous to those used 
by Lee and Leal,’ ’ the differences being only in the choice of parametrization of the surface. It is 
important to-note, however, that only those terms in the kernel Q stemming from the fundamen- 
tal solution (1  1) must be considered, since R # 0 for z > 0. Hence we consider the integral 

x {icfpc:’ + (P’ + P3fPC3”’ + PP,fP(C,o0 + G2) +fi13(PC301 + P0C:Ol 

+ kcfzc:o +fJ,(PC30° + PoC301)+fzr,ZC,001), 

(55)  

where si is the value of the arc length parameter of the ith node, and i and k are the Cartesian base 
vectors. After carrying out the expansions, the i-component of the integral is 

and the k-component is 

where the subscript ‘0’ denotes evaluation at the singular point. 
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